If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+10x-414=0
a = 2; b = 10; c = -414;
Δ = b2-4ac
Δ = 102-4·2·(-414)
Δ = 3412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3412}=\sqrt{4*853}=\sqrt{4}*\sqrt{853}=2\sqrt{853}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{853}}{2*2}=\frac{-10-2\sqrt{853}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{853}}{2*2}=\frac{-10+2\sqrt{853}}{4} $
| -22=-48x^-2+6x | | 4(x+4)+6=2(x+4) | | X/250/2=x/6 | | 20-8x=4(5+7x) | | 12=2c-4 | | 8e-3=37 | | 67+8a=-13 | | 0=-48x^2+6x | | -5/3x+2/5-1/3x=0 | | -48x^2+6x=0 | | -48x^-2+6x=0 | | 6(x−3)=14−2x | | 3/4+b(3/4)=21 | | 3x+-927=0 | | 24x=6.72 | | 2/13p=-10/3 | | -8=2x/3 | | 4x+25+6x-15=0 | | 25.6=2u | | -2x-9=4 | | y=2〖(1.75)〗 | | x/6x-4=-4+6x | | b(3/4)=21 | | 10+12x=2200 | | 10+12x=200 | | 1(-3x)=-4x+6 | | -2)1.7x+3.1)=4 | | 10=16y | | 7+14x+7x= | | 4(2-x)-(x+2)=6+5(x-4) | | z-6.4-1.9=-4.9(z+6) | | -18s+24=-9s–12 |